T1/8^2x=4^12

Simple and best practice solution for T1/8^2x=4^12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for T1/8^2x=4^12 equation:



1/8^2T=4^12
We move all terms to the left:
1/8^2T-(4^12)=0
Domain of the equation: 8^2T!=0
T!=0/1
T!=0
T∈R
We add all the numbers together, and all the variables
1/8^2T-16777216=0
We multiply all the terms by the denominator
-16777216*8^2T+1=0
Wy multiply elements
-134217728T^2+1=0
a = -134217728; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-134217728)·1
Δ = 536870912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{536870912}=\sqrt{268435456*2}=\sqrt{268435456}*\sqrt{2}=16384\sqrt{2}$
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16384\sqrt{2}}{2*-134217728}=\frac{0-16384\sqrt{2}}{-268435456} =-\frac{16384\sqrt{2}}{-268435456} =-\frac{\sqrt{2}}{-16384} $
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16384\sqrt{2}}{2*-134217728}=\frac{0+16384\sqrt{2}}{-268435456} =\frac{16384\sqrt{2}}{-268435456} =\frac{\sqrt{2}}{-16384} $

See similar equations:

| 5=​2.2/​​w​​ | | 1/5(30x-10)=15 | | x-50=x/2+25 | | 5=​2.2/​w​​ | | 4x-4=2(4-x) | | p(5)=8(2^5) | | -9+5v=-44 | | −10=−14v+14v | | n/1+3=3 | | 2s-6s-9=5-6s | | |x^2+6x-4|=12 | | 7x=12−5x | | 5x+4(-5/4x-3)=12 | | 2+v/9=3 | | a-2/9+3-1=3/a+2 | | {3a-4}+{a+2}=180 | | -14=4y-6 | | 6+n/8=5 | | 4·(x−5)=−12 | | 2x+2-2x=8x-14 | | 4x-4+20x+10+18=180 | | g/3*1=4/3*1/3 | | 6=n/8=5 | | 50+x+5=4x+10 | | 282=151-v | | 0.8-2x=2.7 | | -5+x/16=-6 | | -1+-2s=-7 | | -4x+5(x-3)=8(x-8) | | 55=4y-13 | | 3(z+11)=0 | | 7(n)+7=9(n)-1 |

Equations solver categories